STEREOCHEMISTRY OF [1,3]ALKYL SIGMATROPIC SHIFT FROM NITROGEN TO CARBON AND ITS REVERSE IN CERTAIN NITROGEN HETEROCYCLES

J. W. Lown* and M. H. Akhtar

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada (Received in USA 10 September 1973; received in UK for publication 3 December 1973)

1,4-Dibenzyl-1,4-dihydro-2,6-diphenylpyrazine (I) undergoes a stereospecific thermally induced suprafacial [1,3] sigmatropic benzyl shift with inversion of configuration to give the corresponding 1,2-dihydropyrazine (II).¹ In view of the sensitivity of

[1,3] signatropic shifts to molecular environment 2 it was of interest to examine the stereochemistry of the corresponding rearrangement in 1,4-dihydro-2,5-diphenylpyrazines (III).³ We report that the sequence of reactions between chiral 1,2-dihydropyrazines and dimethyl acetylenedicarboxylate ⁴ permits the establishment of the stereochemistry of [1,3] alkyl sigmatropic shifts in both directions (N+C and C+N). The method is illustrated in schemes 1 and 2. For the case of (IV) = (-)(A)-amphetamine,⁵ (VIIIa) [with one [1,3] sigmatropic shift during its formation] upon thermolysis affords pyrrole (S)-(Xla) (100% yield) (required retention of configuration at position 1 of VIIa) and amide (S)-(XV) (100% yield) (82% overall retention for two successive [1,3] sigmatropic shifts) during preparation. reaction with dimethyl acetylenedicarboxylate and subsequent cleavage). The comparable result from (+)(S)-amphetamine corresponds to 82.5% overall retention in the double [1,3] sigmatropic shift.

To decide between the possible allowed double suprafacial inversion or disallowed double suprafacial retention, key experiments were performed with chiral α -methylbenzylamines. In this instance (VIIIb) upon thermolysis afforded products (Xb) and (XIb) corresponding to the direct cleavage of (IX) and permitting the establishment of the stereochemistry of a single [1,3] alkyl

shift (See Scheme 2). The stereochemical results are summarized in the table.

DIMETHYL ACETYLENEDICARBOXYLATE $\left[\alpha\right]_{D}$ (PhH)										
General	Chiral Amine									
Structure	$(-)(R)(IVa)^{5}$	(+) (\$) (IVa)	(S)(-)(IVb) ⁸	(R) (+) (IVb)						
(VII)	-105.6	+108.8	-76.4	+72.8						
(VIII)	-70.7	+ 74.3	-85.40	+88.9						
(XI) ^a	- 77.8	+75.6	-57.25	+57.80						
(XI) ^b	-	-	-59.80	-						
(XV) ^a	+6.55(82%) ^d	- 6.85 (82.5%) ^d	-54.30 ^c	+53.80 [°]						
(XV) ^b (X)	+7.9	- 8.45	-55.5 -21.85 ^e -22.40 ^f	+55.60 +20.95 ^e						
a. Product from thermolysis		d. % overall retention								
b. Authentic synthetic sample		e. <u>erythro</u> diastereomer								
c. Isolated in 2-3% yield		f Value in presence of scavenger nBuSH								

			6							
OPTICAL	ACTIVITY	OF	PRODUCTS	FROM	REACTION	OF	CHIRAL	1.	2-DIHYDROPYRAZINES	AND
						_				

 $E = CO_2 CH_3$

The configuration of the known erythro (R)(-) 2,3-diphenylbutyronitrile $([\alpha]_D^{26} - 24^\circ$, PhH) has been correlated with that of (R)(+) α -phenethyl chloride, by SN₂ inversion ⁷, which in turn has been correlated with both (R)(+) glyceraldehyde ⁸ and (S)(-) α -methylbenzylamine.⁸ The purified erythro diastereomer m.p. 135° from (Xb) ($[\alpha]_D^{25} - 21.85$, PhH), therefore corresponds to 91.3% overall inversion (i.e. a single inversion in the step (VIb) to (VIIb) and retention in the step (IXb) to (Xb). It follows that formation of (XV) in 82% overall retention corresponds to two successive N+C (VIa to VIIa) and C+N (IXa to XIIa) allowed suprafacial [1,3] signatropic shifts. The analogous [1,3] signatropic shift (I) to (II) exhibits a 12 ± 6% contribution from the radical dissociation recombination mechanism ¹ which may account for the loss of 18% activity observed here. In fact thermolysis of (VIIIb) at a higher temperature produced some 2,3-diphenylbutane from α -methylbenzyl coupling in addition to (X) and (XIb). The present system should allow further insight into the general question of orbital symmetry 2 or least motion control 2d in [1,3] shifts. To this end we are examining substituent electronic effects on the stereochemistry of these migrations induced both thermally and photochemically. 10

References and Notes

- * Author to whom enquiries should be addressed.
- 1. J. W. Lown and M. H. Akhtar, Chem. Commun., in press (1973).
- (a) J. A. Berson and G. L. Nelson, J. Amer. Chem. Soc., <u>89</u>, 5503 (1967); (b) J. A. Berson, Accounts Chem. Res., <u>1</u>, 152 (1968); (c) R. C. Cookson and J. E. Kemp, Chem. Commun., 385 (1971); (d) N. D.Epiotis, J. Amer. Chem. Soc., <u>95</u>, 1206 (1973).
- 3. (a) J. W. Lown and M. H. Akhtar, Can. J. Chem., <u>50</u>, 2236 (1972); (b) J. W. Lown and
 M. H. Akhtar, J. Chem. Soc., (Perkin 1), 683 (1973); (c) S-J. Chen and F. W. Fowler,
 J. Org. Chem., <u>35</u> 3987 (1970); S-J. Chen and F. W.Fowler, J. Org. Chem., <u>36</u>, 4025 (1971).
- 4. J. W. Lown and M. H. Akhtar, Tetrahedron Lett., 3727 (1973).
- 5. J. Cymermann Craig, R. P. K. Chan, and S.K. Roy, Tetrahedron 23, 3573 (1967).
- Satisfactory analyses and accurate mass spectral peak measurements were obtained on all new compounds reported.
- 7. W. J. Chambers, W. R. Brasen, and C. R. Hauser, J. Amer. Chem. Soc., <u>79</u>, 879 (1957). It must be noted that the configuration of $(R)(+)-\alpha$ -phenethyl chloride is given incorrectly in this reference (see ref. 9).
- 8. E. L. Eliel "Stereochemistry of Carbon Compounds", McGraw-Hill Book Company, New York (1962) p.89, 119, 122, 402.
- 9. W. J. Chambers, W. R. Brasen, and C. R. Hauser, J. Amer. Chem. Soc., 79, 6579 (1957).
- 10. An alternative mechanism suggested by a referee for formation of (VIII) from (III) involving prior reversible formation of the symmetrical 1,4-dihydropyrazine, which then adds the acetylenic ester with subsequent valence tautomerism, [1,3] sigmatropic (N+C) shift and Cope rearrangement, may be ruled out since 6-d-(III) gives rise to selectively 8-labelled (VIII) only.⁴ The symmetrical 1,4-dihydropyrazine would have given rise to label scrambling at the 3 and 8 positions of (VIII) and also in the cycloreversion products (XI) and (XIV).